Similarity, Cross-linguistic Influence and Preferences in Non-Native Vowel Perception

An experimental cross-language comparison of German vowel identification by non-native listeners

verfasst von
Mag. Nadja Kerschhofer-Puhalo

angestrebter akademischer Grad
Doktorin der Philosophie (Dr. phil.)

Wien, 2014
Similarity, Cross-linguistic Influence and Preferences in Non-Native Vowel Perception

Contents

Acknowledgments ................................................................................................................. 3
Abstract ............................................................................................................................. 5
Deutsche Zusammenfassung – German Abstract ................................................................. 7
Introduction......................................................................................................................... 17
1 Cross-linguistic Influence, Similarity and Markedness in Language Acquisition ............. 29
2 Speech Perception in Language Processing and Language Acquisition ............................. 59
3 Similarity in Cross-language Speech Perception .............................................................. 99
4 Vowel Sounds and Vowel Inventories ........................................................................... 121
5 The German Vowel System .......................................................................................... 161
6 The Empirical Study ..................................................................................................... 221
7 Data Analysis ............................................................................................................... 241
8 Learner-Related Factors and Speaker-Specific Analysis ................................................... 267
9 Cross-language Analysis .............................................................................................. 289
10 Language-specific Analysis ........................................................................................ 319
11 Vowel-specific Analysis and Cross-language Comparison ............................................. 561
12 Modelling Similarity, Difficulty and Preferences in Non-Native Vowel Perception ......... 607
General Conclusions ......................................................................................................... 683
List of Figures .................................................................................................................... 694
List of Tables ..................................................................................................................... 701
References ......................................................................................................................... 706
Curriculum Vitae and Publications ..................................................................................... 744
Acknowledgments

I gratefully acknowledge the help, encouragement and advice of many people who supported me during the work on this dissertation.

First, I want to express my gratitude to my advisor, Wolfgang U. Dressler not only for his overseeing this project over the past years, but also for introducing me to the true diversity of linguistic research. His high standards provided me with a model for my own scientific work.

I am indebted to Rudolf de Cillia for his continuous support and encouragement throughout the various stages of this project. His ready ear always made a difference.

For invaluable comments on various parts and versions of this work I owe thanks to Katarzyna Dziubalska-Kołaczyk, David Goldstein, Hans Christian Luschützky, Melanie Malzahn and Sylvia Moosmüller. All remaining faults are of course mine.

For their precious advice, intellectual and practical support and friendship in different stages of this study I want to thank my colleagues at the Department of Linguistics of the University of Vienna and my colleagues at the Acoustics Research Institute of the Austrian Academy of Science.

Special thanks goes to Friedrich Neubarth for his assistance in converting my survey data into a searchable format.

Thanks also to the more than 200 persons participating in the perceptual experiments and to all those who helped me find them, especially to Katalin Árkossy, Elisabeth Herden, Sigrun Innmann-Trojer, Ute Karlavaris-Bremer and Grete Kernegger.

For their help with the manuscript I would like to thank Axel Brom and Laura Wang.

My personal thanks goes to Werner Mayer for his cordial support and enthusiasm in our current project.

This dissertation was supported in part by a dissertation grant F-98-G by the University of Vienna that encouraged me to undertake the large-scale data collection for this project. Part of the data acquisition was also supported by a pre-dissertation travel grant of the University of Vienna.

Most importantly, I want to thank my family for their constant support, love and encouragement, for all their wise words and critical questions. I would never have completed this project without them. Thank you!
Abstract

This dissertation presents an empirical study on German vowel identification by non-native listeners. The central tenet of the study is that the acquisition of second language phonetics and phonology is conditioned by three major forces: (1) language-specific phonological and phonetic patterns and cross-linguistic influence mainly from the learners’ first language L1 on the target language L2, (2) intra-lingual similarity of L2 sounds as perceived by L2 learners, and (3) the influence of universal preferences and biases for particular sound patterns. Similarity is one of the central concepts in current models of the acquisition of second language phonology. The operationalization of this construct, however, has so far not received sufficient attention. This study aims to integrate contributions from second language acquisition research, empirical studies in acoustic and articulatory phonetics and theoretical approaches from cognitive psychology for a better understanding of the diverse phonetic and cognitive aspects of similarity and its role in non-native vowel perception.

The aim of the experimental part is to investigate the perception of German vowel contrasts by L2 learners from diverse language backgrounds with smaller or larger vowel inventories. Methods of descriptive statistics and higher statistical procedures such as Hierarchical Clustering and Multidimensional Scaling are used to make inferences about inter-category distances and perceived similarity, confusion probability and the direction of perceptual substitutions.

The German vowel system is described in terms of five major classes according to the location of narrowing in the vocal tract (constriction location, cf. Wood 1979): pharyngeal /a/, uvular /o:/, velar /u:/, mid-palatal /e/ e: e: /Φ:/ and pre-palatal /i: y:/ vowels are further differentiated by mandibular aperture, rounding, constriction degree and phonemic length. The articulatory description of German vowel categories is supplemented with an acoustic analysis of the input stimuli from the perception experiment.

The empirical basis of the study is a corpus of vowel confusion data collected in an identification experiment performed with 173 non-native listeners from ten L1 sub-samples and 18 German natives (control group). Starting with a contrastive analysis for each of the ten L2 learners’ native languages, the empirical material is then evaluated on a language-specific, a vowel-specific and a learner-related level. In a cross-language comparison, typical patterns of wrong identifications (difficulties), category confusion and direction of perceptual substitutions (preferences) are discussed. Moreover, perceptual vowel maps, i.e. spatial
representation of the high-dimensional perceptual vowel space, are derived for each of the ten language sub-samples by means of Multidimensional Scaling (MDS).

Confusion matrices and perceptual vowel maps – spatial MDS representations of the L2 listeners’ perceptual vowel space – summarize the results of the identification task for each of the language sub-samples and reveal language-specific as well as more common cross-linguistic patterns of the difficulties associated with specific contrasts, typical patterns of perceptual confusion and preferences for specific response categories. Moreover, the data reveal several asymmetries in the direction of perceptual substitution processes (perceptual bias). Within a given vowel class, some input categories cause more difficulties than others and some qualities attract more responses than others. While a-vowels, /iː/, /uː/, /eː/ and /ɔ/ are particularly stable, most difficulties are observed with contrasts of front rounded /yː, v ʊː, œ/ vowels, /eː/ and /ɛː/. Several sub-samples show a strong tendency of /iː/, /uː/ and /yː/ to attract responses for /ɛː/-, /oː/- and /ʊː/-stimuli, respectively, whereas perceptual substitutions in the opposite direction are rather uncommon. For front rounded qualities, the MDS maps of the listeners’ perceptual space reveal language-specific “similarity clusters” with respect to substitutions of front rounded vowels with either back rounded or front non-rounded categories.

The study contributes to the modelling of similarity in second language acquisition in three ways: First, it demonstrates the necessity to distinguish inter-language similarity from intra-language similarity and phonetic distance and similarity from psychological similarity. Second, it demonstrates empirically the non-linear and language-specific relation between articulatory or acoustic properties of vowel stimuli and the L2 listeners’ responses. Finally, it provides empirically grounded ways of operationalizing perceived similarity between L2 vowel categories in terms of similarity scores and distances in spatial MDS representations.

The study demonstrates that perceived similarity between German vowel categories cannot be predicted directly from physical properties of the acoustic signal but is determined by the listener’s attentional tuning to specific dimensions of the perceptual vowel space and by language-specific and more general physical and cognitive biases associated with stimuli as well as responses.

Perceived similarity $s_{ij}$ between vowel categories of the target language is modelled as the result of the complex interaction of phonetic proximity $p_{ij}$, stimuli biases $b_i$ and response biases $b_j$ ($s_{ij} = p_{ij} * b_i * b_j$). Biases vary according to characteristics of the acoustic signal, the set of stimuli and response categories and the listeners’ language experience (in L1, L2, Ln), L2 proficiency and their individual conception of the target language vowel system.
Deutsche Zusammenfassung – German Abstract

Gegenstand dieser Dissertation ist die theoretische und empirische Beschreibung von Faktoren, die die Identifikation von Vokalen und den Erwerb phonetischer und phonologischer Strukturen der Zielsprache bestimmen: (1) sprachspezifische phonologische und phonetische Strukturen und wechselseitiger sprachlicher Einfluss (cross-linguistic influence) zwischen der Erstsprache der Lernenden (L1) und der Zielsprache (L2), (2) intralinguale Ähnlichkeitsbeziehungen zwischen L2-Kategorien, wie sie von den Lernenden selbst perziptiert werden, und (3) sprachübergreifende, universale Präferenzen (biases) für bestimmte lautliche Strukturen.


Im empirischen Teil der Arbeit wird ein Korpus von Konfusionsdaten, d.h. Verwechslungen zwischen L2-Kategorien aus einem Vokal-Identifikationstest mit 173 Deutschlernenden zehn verschiedener Erstsprachen untersucht. Mit Methoden der deskriptiven Statistik und höheren statistischen Verfahren der Hierarchischen Clusteranalyse und der Multidimensionalen Skalierung werden Aussagen zu akustischer und perzeptueller Ähnlichkeit und Distanz, der Fehleranfälligkeit bestimmter Kategorien und der Richtung perzeptueller Substitutionsprozesse abgeleitet.


Das empirische Material wird unter sprachspezifischen, vokalspezifischen und lernerspezifischen Aspekten sowie sprachübergreifend analysiert. Mittels deskriptiver Statistik werden Fehlerhäufigkeiten und Präferenzen für bestimmte Response-Kategorien sprachspezifisch und sprachübergreifend beschrieben. Die Identifikationsdaten werden in
Konfusionsmatrizen zusammengefasst und quantitativ wie auch qualitativ analysiert. Aus den Konfusionsdaten werden Werte perzipierter Ähnlichkeit und Distanz zwischen deutschen Vokalkategorien errechnet. Mittels Multidimensionaler Skalierung werden daraus räumliche Repräsentationen des perzeptuellen Vokalraums (perceptual vowel maps) abgeleitet, die die sprachspezifisch geprägte Wahrnehmung perzeptueller Ähnlichkeiten und Distanzen zwischen Vokalkategorien durch Lernende verschiedener Erstsprachen visualisieren.


Die Studie leistet einen wesentlichen Beitrag zur Modellierung von Ähnlichkeit im Kontext fremdsprachlichen Lernens, indem sie (1) die Notwendigkeit einer grundlegenden Unterscheidung von (a) inter-lingualen Ähnlichkeiten zwischen Erst- und Zielsprache und intra-lingualen Ähnlichkeiten von Kategorien innerhalb der Zielsprache aufzeigt sowie (b) die Unterscheidung von phonetischer Ähnlichkeit vs. psychologischer Ähnlichkeit verdeutlicht, (2) die non-lineare und sprachspezifische Beziehung artikulatorisch-akustischer Parameter und der Wahrnehmung durch Deutschlernende auf Basis eines großen Samples von 173 Probanden mit zehn verschiedenen Erstsprachen empirisch belegt und (3) Ansätze zur metrischen Operationalisierung perzeptueller Ähnlichkeit und räumlicher Visualisierung des sprachspezifisch geprägten perzeptuellen Vokalraums mittels MDS präsentiert.

Die Untersuchung zeigt, dass perzeptuelle Ähnlichkeiten zwischen Vokalkategorien des Deutschen auf akustischen Eigenschaften des Lautsignals einerseits und sprachspezifischen wie auch allgemeineren physischen und kognitiven Präferenzen (biases) andererseits und der relativen Gewichtung (attentional weight) von Dimensionen im perzeptuellen Raum beruhen.

Wahrgenommene perzeptuelle Ähnlichkeit $s_{ij}$ zwischen Kategorien $i$ und $j$ wird als Resultat der Interaktion von phonetischer Nähe $p_{ij}$ und der unterschiedlichen Gewichtung von Stimuli-Biases $b_i$ und Response-Biases $b_j$ modelliert ($s_{ij} = p_{ij} \ast b_i \ast b_j$). Biases sind von Eigenschaften des Input-Signals, dem Set von Stimuli- und Response-Kategorien und individuellem sprachlichen Wissen, Erfahrungen und Repräsentationen des Zielsprachen-Systems bestimmt.
# Table of Contents

Acknowledgments .................................................................................................................................................. 3

Abstract ............................................................................................................................................................. 5

Deutsche Zusammenfassung – German Abstract .............................................................................................. 7

Introduction .......................................................................................................................................................... 17

Organization of the dissertation................................................................................................................................ 24

1 Cross-linguistic Influence, Similarity and Markedness in Language Acquisition ........................................... 29

1.1 Fundamental concepts in second language acquisition research ................................................................. 29
  1.1.1 Transfer, interference and cross-linguistic influence ................................................................................. 30
  1.1.2 Similarity ....................................................................................................................................................... 35
  1.1.3 Markedness ..................................................................................................................................................... 37
  1.1.4 Universals ..................................................................................................................................................... 40
  1.1.5 Difficulty ....................................................................................................................................................... 41

1.2 Language acquisition, markedness and universals in phonological theory .................................................... 42
  1.2.1 Language typology and universals ........................................................................................................... 43
  1.2.2 Universal Grammar ..................................................................................................................................... 43
  1.2.3 Optimality Theory ....................................................................................................................................... 44
  1.2.4 Natural Phonology ...................................................................................................................................... 45
  1.2.5 Functional Grounding ............................................................................................................................... 49

1.3 Language-related, learning-related and universal factors in second language acquisition .................................. 50
  1.3.1 Developmental processes ......................................................................................................................... 50
  1.3.2 Individual strategies and the active role of the learner ............................................................................ 51
  1.3.3 Cross-linguistic influence, markedness and difficulty in L2 ..................................................................... 54

1.4 Conclusions .................................................................................................................................................... 56

2 Speech Perception in Language Processing and Language Acquisition ........................................................ 59

2.1 On the nature of human speech processing ........................................................................................................ 59
  2.1.1 Variation in the speech signal .................................................................................................................. 59
  2.1.2 Categorization of speech sounds ............................................................................................................ 61
  2.1.3 Categorical vs. continuous speech perception ....................................................................................... 62
  2.1.4 Language-specific speech perception .................................................................................................... 64
  2.1.5 Auditory, phonetic and phonemic processing in perception .................................................................... 66
  2.1.6 Phonetic traces and phonemic processing ............................................................................................ 67

2.2 Speech perception and language acquisition .................................................................................................... 68
  2.2.1 The development of speech perception in L1 acquisition ........................................................................ 68
  2.2.2 Perception and foreign accent in L2 acquisition ..................................................................................... 71

2.3 Empirical research on L2 perception ................................................................................................................ 73
  2.3.1 Experimental investigation on L2 perception ............................................................................................ 75
  2.3.2 Variability in L2 speech perception ........................................................................................................... 75
  2.3.3 Language experience and the choice of subjects ..................................................................................... 76
  2.3.4 Natural vs. synthetic stimuli .................................................................................................................... 76
  2.3.5 Discrimination, identification and perceptual assimilation tasks .............................................................. 78
    2.3.5.1 Discrimination tasks ........................................................................................................................... 78
    2.3.5.2 Identification tasks ........................................................................................................................... 79
    2.3.5.3 Perceptual assimilation tasks ............................................................................................................ 80
  2.3.6 Testing L2 vowel perception – methodological considerations ................................................................. 80
  2.3.7 Brain-based methods .................................................................................................................................. 82

2.4 Models of cross-linguistic speech perception .................................................................................................... 83
  2.4.1 The Native Language Magnet Model (NLM) ............................................................................................ 84
3  Similarity in Cross-language Speech Perception ................................................................. 99

3.1  Notions of similarity in second language acquisition research ........................................ 99
  3.1.1  Specific and overall similarity .................................................................................. 100
  3.1.2  Objective and subjective similarity or phonetics and phonology ......................... 101
  3.1.3  Inter-lingual and intra-lingual similarity ................................................................. 102
  3.1.4  Similarity, transferability and learnability in L2 acquisition ........................................ 102

3.2  Dimensions of phonetic similarity.................................................................................... 104
  3.2.1  Articulatory similarity ............................................................................................ 105
  3.2.2  Acoustic similarity .................................................................................................. 106
  3.2.3  The influence of orthography .................................................................................. 107
  3.2.4  Phonetic and phonological similarity ....................................................................... 108
  3.2.5  Perceptual similarity and difficulty in L2 acquisition ........................................... 109

3.3  Similarity, salience and difficulty in perception ................................................................. 111
  3.3.1  Perceptual salience and phonemic contrast .............................................................. 111
  3.3.2  Similarity, phonemic contrasts and language-specific representations .................. 113
  3.3.3  Similarity, perceptual salience and asymmetry ......................................................... 114

3.4  Conclusions .................................................................................................................... 118

4  Vowel Sounds and Vowel Inventories ................................................................................. 121

4.1  The study of vowels in L2 acquisition ........................................................................... 121

4.2  The definition of vowels – a functional phonetic approach ........................................... 122

4.3  The phonetic and phonological description of vowels .................................................... 124
  4.3.1  Frontness/Backness ............................................................................................... 125
  4.3.2  Height ..................................................................................................................... 125
  4.3.3  Rounding ................................................................................................................ 126
  4.3.4  Dynamic spectral variation and context-dependent variation .................................. 129
  4.3.5  Phonetic duration and phonemic length ................................................................... 131
  4.3.6  Intrinsic pitch and dynamic fundamental frequency ............................................. 132

4.4  Vowel inventories and phonetic universals ................................................................... 135

4.5  Phonology and vowel perception .................................................................................... 137

4.6  System size and distributional patterns ........................................................................ 139

4.7  Theories of vowel inventory typology .......................................................................... 140
  4.7.1  Markedness Theory .............................................................................................. 140
  4.7.2  The Natural Phonology of Vowels ......................................................................... 141
  4.7.3  The Quantal Theory of Speech .............................................................................. 143
  4.7.4  Vowel Dispersion Theories ..................................................................................... 144
  4.7.5  The continuous vowel space vs. discrete locations of constriction ......................... 146
  4.7.6  An articulatory-oriented approach ......................................................................... 150

4.8  Vowel perception in L2 acquisition – Levels of description ........................................... 155

4.9  Conclusions .................................................................................................................... 156

5  The German Vowel System ............................................................................................... 161

5.1  Typological description ................................................................................................. 161

5.2  System size ................................................................................................................... 161

5.3  Distinctive features ....................................................................................................... 163
5.4 Phonological contrasts and phonetic correlates ........................................................................ 166
   5.4.1 Constriction location ........................................................................................................ 167
      5.4.1.1 Pharyngeal vowels .................................................................................................... 169
      5.4.1.2 Uvular vowels ........................................................................................................ 170
      5.4.1.3 Velar vowels ........................................................................................................... 171
      5.4.1.4 Palatal vowels ........................................................................................................ 173
   5.4.2 Rounding .......................................................................................................................... 179
   5.4.3 Constriction degree ........................................................................................................ 182
   5.4.4 Jaw and lip aperture ....................................................................................................... 183
   5.4.5 Prosodic characteristics ................................................................................................. 185
      5.4.5.1 Duration .................................................................................................................. 185
      5.4.5.2 Stress ......................................................................................................................... 188
      5.4.5.3 Intrinsic pitch and intrinsic length ............................................................................ 190

5.5 Frequency of occurrence ...................................................................................................... 196

5.6 Phonemic vowel contrasts in German ................................................................................ 200

5.7 Simulating patterns of perceptual similarity for German vowel categories ................................ 204
   5.7.1 Phonetic similarity in terms of physical properties ......................................................... 204
   5.7.2 Hierarchical clustering of input stimuli ............................................................................. 205

5.8 Hypotheses – Predictions vowel perception in L2 German .................................................. 212
   5.8.1 Constriction location .................................................................................................... 212
   5.8.2 Constriction degree and phonemic length ...................................................................... 215
   5.8.3 Rounding ....................................................................................................................... 216
   5.8.4 Frequency of occurrence .............................................................................................. 217
   5.8.5 System size and category distribution ........................................................................... 218

5.9 Conclusions – Perceptual similarity of German vowels ...................................................... 218

6 The Empirical Study ................................................................................................................. 221
   6.1 Preliminary considerations ............................................................................................... 221

   6.2 Method and data collection ............................................................................................. 224
      6.2.1 Identification task ...................................................................................................... 224
      6.2.2 Response categories ................................................................................................. 226
      6.2.3 Test procedure ........................................................................................................... 228

   6.3 Stimuli .............................................................................................................................. 228
      6.3.1 Item structure ............................................................................................................. 229
      6.3.2 Speaker ....................................................................................................................... 230
      6.3.3 Acoustic analysis ..................................................................................................... 230

   6.4 Sample structure .............................................................................................................. 231
      6.4.1 Participants ............................................................................................................... 231
      6.4.2 Language background (L1) .................................................................................. 232
      6.4.3 Questionnaire ........................................................................................................... 233
      6.4.4 Native German control group .................................................................................. 234

   6.5 Task evaluation: objectivity, reliability, and validity ........................................................ 235
   6.6 Conclusions ....................................................................................................................... 239

7 Data Analysis ....................................................................................................................... 241
   7.1 Identification, categorization and descriptive statistics ..................................................... 241

   7.2 Analyzing perceptual substitutions .................................................................................. 242
      7.2.1 Identification and confusion matrix .......................................................................... 242
      7.2.2 Difficulties ................................................................................................................ 243
      7.2.3 Preferences .............................................................................................................. 245
      7.2.4 Patterns of perceptual confusion ............................................................................ 247
      7.2.5 Similarity and distance ............................................................................................. 248
      7.2.6 Symmetry and asymmetry ....................................................................................... 250
7.3 Multidimensional Scaling (MDS) ........................................................................ 251
  7.3.1 Mapping the perceptual space ................................................................. 251
  7.3.2 Distance measures and scale level ......................................................... 253
  7.3.3 Number and interpretability of perceptual dimensions ......................... 254
  7.3.4 Goodness of fit ..................................................................................... 256
  7.3.5 Rotation .............................................................................................. 260
  7.3.6 Interpretation of spatial representations .................................................. 262
7.4 Conclusions ................................................................................................. 264

8 Learner-Related Factors and Speaker-Specific Analysis ..................................... 267
  8.1 Collection and analysis of personal variables ............................................. 267
  8.2 Internal vs. external factors ....................................................................... 268
  8.3 Between-group differences ........................................................................ 269
  8.4 The influence of L1 .................................................................................. 270
  8.5 Sex ......................................................................................................... 273
  8.6 Level of proficiency .................................................................................. 274
    8.6.1 Beginners vs. advanced learners ......................................................... 275
    8.6.2 Very advanced learners .................................................................... 276
  8.7 Language experience ................................................................................ 276
    8.7.1 Length of residence ............................................................................ 277
    8.7.2 Formal instruction .............................................................................. 279
    8.7.3 Informal language experience ............................................................ 280
    8.7.4 Age, onset, and duration of L2 learning ............................................. 280
  8.8 Experience in foreign language learning und metalinguistic knowledge ........ 283
    8.8.1 German as first foreign language ....................................................... 283
    8.8.2 Bilingualism and multilingualism ...................................................... 283
    8.8.3 Phonetic instruction and pronunciation training ................................... 284
  8.9 Conclusions – The interaction of learner-related variables ......................... 285

9 Cross-language Analysis ................................................................................... 289
  9.1 Difficulties ............................................................................................... 289
    9.1.1 Language-specific variation ............................................................... 290
    9.1.2 Category-specific variation ................................................................. 291
    9.1.3 Context-dependent variation .............................................................. 295
  9.2 Preferences .............................................................................................. 300
  9.3 Patterns of confusion ............................................................................... 305
  9.4 Similarity and distance ............................................................................. 306
    9.5 Mapping the perceptual vowel space in L2 German ................................ 306
      9.5.1 Multidimensional Scaling ............................................................... 306
      9.5.2 Cross-language comparison of perceptual vowel maps .................... 309
  9.6 Conclusions ............................................................................................. 317

10 Language-specific Analysis ............................................................................. 319
  10.1 Analysis of L2 listeners’ responses ......................................................... 319
    10.2 German – The L1 control group ........................................................... 323
      10.2.1 Results and interpretation .............................................................. 323
        10.2.1.1 Difficulties ................................................................................. 323
        10.2.1.2 Preferences ............................................................................. 324
        10.2.1.3 Patterns of confusion ............................................................... 324
        10.2.1.4 Similarity and distance ............................................................. 326
        10.2.1.5 The perceptual vowel map for native German listeners (L1 control group) 327
10.2.2 Summary .............................................................................................................. 329

10.3 Albanian .................................................................................................................. 330
10.3.1 General characteristics ..................................................................................... 330
10.3.2 Phonological and phonetic description............................................................. 330
10.3.3 Contrastive analysis ......................................................................................... 333
10.3.4 Results and discussion ....................................................................................... 334
10.3.4.1 Difficulties ..................................................................................................... 334
10.3.4.2 Preferences .................................................................................................. 336
10.3.4.3 Patterns of confusion .................................................................................... 337
10.3.4.4 Similarity and distance ................................................................................ 339
10.3.4.5 The perceptual vowel map for L1 Albanian listeners .................................... 341
10.3.5 Summary ............................................................................................................ 344

10.4 Arabic ...................................................................................................................... 346
10.4.1 General characteristics (Classical Arabic, Modern Standard Arabic and regional varieties) ................................................. 346
10.4.2 Phonological and phonetic description ............................................................. 347
10.4.3 Contrastive analysis ......................................................................................... 354
10.4.4 Results and discussion ....................................................................................... 358
10.4.4.1 Difficulties ..................................................................................................... 358
10.4.4.2 Preferences .................................................................................................. 360
10.4.4.3 Patterns of confusion .................................................................................... 361
10.4.4.4 Similarity and distance ................................................................................ 364
10.4.4.5 The perceptual vowel map for L1 Arabic listeners .................................... 367
10.4.5 Summary ............................................................................................................ 369

10.5 English .................................................................................................................... 371
10.5.1 General characteristics ..................................................................................... 371
10.5.2 Phonological and phonetic description ............................................................. 374
10.5.3 Contrastive analysis ......................................................................................... 385
10.5.4 Results and discussion ....................................................................................... 389
10.5.4.1 Difficulties ..................................................................................................... 390
10.5.4.2 Preferences .................................................................................................. 391
10.5.4.3 Patterns of confusion .................................................................................... 392
10.5.4.4 Similarity and distance ................................................................................ 396
10.5.4.5 The perceptual vowel map for L1 English listeners .................................... 399
10.5.5 Summary ............................................................................................................ 399

10.6 Farsi ......................................................................................................................... 404
10.6.1 General characteristics ..................................................................................... 404
10.6.2 Phonological and phonetic description ............................................................. 404
10.6.3 Contrastive analysis ......................................................................................... 407
10.6.4 Results and discussion ....................................................................................... 408
10.6.4.1 Difficulties ..................................................................................................... 409
10.6.4.2 Preferences .................................................................................................. 410
10.6.4.3 Patterns of confusion .................................................................................... 411
10.6.4.4 Similarity and distance ................................................................................ 413
10.6.4.5 The perceptual vowel map for L1 Farsi listeners .................................... 417
10.6.5 Summary ............................................................................................................ 419

10.7 Hungarian ................................................................................................................ 420
10.7.1 General characteristics ..................................................................................... 420
10.7.2 Phonological and phonetic description ............................................................. 420
10.7.3 Contrastive analysis ......................................................................................... 424
10.7.4 Results and discussion ....................................................................................... 427
10.7.4.1 Difficulties ..................................................................................................... 427
10.7.4.2 Preferences .................................................................................................. 428
10.7.4.3 Patterns of confusion .................................................................................... 429
10.7.4.4 Similarity and distance ................................................................................ 431
10.7.4.5 The perceptual vowel map for L1 Hungarian listeners .................................... 432
10.7.5 Summary ............................................................................................................ 435

10.8 Mandarin/Standard Chinese ................................................................................... 437
## 10.9 Polish .............................................................. 458

10.9.1 General characteristics ................................................. 458
10.9.2 Phonological and phonetic description ................................ 458
10.9.3 Contrastive Analysis .......................................................... 463
10.9.4 Results and interpretation .................................................. 471
10.9.4.1 Difficulties ................................................................ 472
10.9.4.2 Preferences ............................................................. 473
10.9.4.3 Patterns of confusion ................................................ 474
10.9.4.4 Similarity and distance ................................................. 480
10.9.4.5 The perceptual vowel map for L1 Polish listeners .................. 482
10.9.5 Summary ........................................................................ 484

## 10.10 Romanian .......................................................... 487

10.10.1 General characteristics .................................................... 487
10.10.2 Phonological and phonetic description ................................ 488
10.10.3 Contrastive Analysis .......................................................... 494
10.10.4 Results and interpretation .................................................. 495
10.10.4.1 Difficulties ................................................................ 495
10.10.4.2 Preferences ............................................................. 497
10.10.4.3 Patterns of confusion ................................................ 498
10.10.4.4 Similarity and distance ................................................. 501
10.10.4.5 The perceptual vowel map for L1 Romanian listeners .................. 503
10.10.5 Summary ........................................................................ 506

## 10.11 SerBoCroatian .......................................................... 508

10.11.1 General characteristics .................................................... 508
10.11.2 Phonological and phonetic description ................................ 511
10.11.3 Contrastive Analysis .......................................................... 516
10.11.4 Results and interpretation .................................................. 519
10.11.4.1 Difficulties ................................................................ 519
10.11.4.2 Preferences ............................................................. 521
10.11.4.3 Patterns of confusion ................................................ 521
10.11.4.4 Similarity and distance ................................................. 525
10.11.4.5 The perceptual vowel map for L1 SerBoCroatian listeners .................. 527
10.11.5 Summary ........................................................................ 530

## 10.12 Turkish ...................................................................... 532

10.12.1 General characteristics .................................................... 532
10.12.2 Phonological and phonetic description ................................ 532
10.12.3 Contrastive Analysis .......................................................... 542
10.12.4 Results and interpretation .................................................. 549
10.12.4.1 Difficulties ................................................................ 549
10.12.4.2 Preferences ............................................................. 550
10.12.4.3 Patterns of confusion ................................................ 552
10.12.4.4 Similarity and distance ................................................. 554
10.12.4.5 The perceptual vowel map for L1 Turkish listeners .................. 556
10.12.5 Summary ........................................................................ 560

## 11 Vowel-specific Analysis and Cross-language Comparison .......................................................... 561

11.1 Patterns of confusion .......................................................... 561

11.1.1 Pharyngeal vowels .......................................................... 562
11.1.2 Velar and uvular vowels
11.1.3 Pre- and mid-palatal vowels
11.1.4 Labio-palatal vowels

11.2 Substitution processes and perceptual bias
11.2.1 Constriction degree and phonemic length
11.2.2 Constriction location
11.2.3 Labiality and palatality

11.3 Asymmetries and perceptual bias
11.3.1 Difficulties
11.3.2 Preferences
11.3.3 Direction of substitutions

11.4 Summary and conclusions

12 Modelling Similarity, Difficulty and Preferences in Non-Native Vowel Perception

12.1 Vowel systems, vowel categories and the vowel space
12.1.1 The multi-dimensional vowel space
12.1.2 Spectral information and multidimensional variation
12.1.3 The continuous vowel space vs. categorical discreteness
12.1.3.1 The categorical view – basic assumptions
12.1.3.2 The internal structure of sound categories
12.1.4 The acquisition of vowel categories and vowel systems

12.2 Similarity
12.2.1 Perceptual similarity and categorization
12.2.2 Modelling perceptual similarity
12.2.2.1 Geometric models of similarity
12.2.2.2 Feature-based models of similarity
12.2.3 Multidimensional Scaling – Mapping the perceptual space
12.2.4 Measures of distance and similarity

12.3 Asymmetry
12.3.1 Identification and categorization
12.3.2 Asymmetry, self-similarity and distance inequality
12.3.3 Asymmetry and bias
12.3.3.1 Peripherality
12.3.3.2 Frequency
12.3.3.3 Density
12.3.3.4 Self-similarity

12.4 Differential bias of stimuli and responses
12.4.1 Stimulus-related and response related aspects of similarity and bias
12.4.2 Bias in the signal or bias in the listener?
12.4.3 Analysis of stimuli and responses
12.4.4 $s_{ij} = p_{ij} \ast b_i \ast b_j \ast t_i$ – The formula for perceived similarity, phonetic proximity and biases

12.5 Bias in language learning – Selective attention and attentional learning

12.6 Conclusions

General Conclusions

List of Figures

List of Tables

References

Curriculum Vitae and Publications
Introduction

A crucial component of foreign language learning is the acquisition of the characteristic sound patterns of the target language. At the same time, it is precisely the acquisition of phonetic and phonological patterns of the target language that may lead to considerable difficulties and a traceable “foreign accent” even with very advanced learners. To account for a “foreign” or “non-native accent” in the target language, several explanations have been proposed: phonetic habits due to transfer from the listeners’ native language (L1) into the second language (L2) and “reduced neural plasticity” after a so-called “critical period” are among the most widely accepted explanations for the learners’ failure to acquire a native-like accent in L2. Moreover, factors such as inadequate input, social identity or insufficient motivation have been proposed to account for L2 learners’ incomplete or inadequate achievement in L2 sound production and the fact that a native-like accent is rarely achieved by adult or so-called “late learners”.

Still of greater importance, however, is the inadequate perception of phonetic information in the L2 as already stated by Lado (1957):

“Much less known, and often not even suspected, may be the fact mentioned above that the speaker of one language listening to another does not actually hear the foreign language sound units – phonemes. He hears his own. Phonemic differences in the foreign language will be consistently missed by him if there is no similar phonemic difference in his native language.” (Lado 1957: 112)

Numerous studies consider an accurate perception of L2 sounds as a central determinant for the development of an appropriate pronunciation in L2. The accurate perception of sounds, contrasts and phonetic details in L2 is considered not only to improve native-like speech production but also to facilitate the development of phonological categories of the target language and to contribute to better word-recognition and ease in speech processing. Several studies on the interaction of perception and production support the argument that the development of L2 sound perception precedes that of production and that – if accuracy in

1 In studies on foreign language acquisition, the target language is frequently referred to as second language (L2), which can be the first foreign language that is acquired by a learner in lifetime after his or her first language (L1) or any other language acquired after L2 (L3, L4, ..., Ln). L1 is also referred to as native language. To simplify, “second language” (L2) will be used in this study as a cover-term to refer to any language acquired subsequently to L1, irrespective of the total number of languages that have been acquired by the learner, the attained level of proficiency or the context of acquisition (see chapter 1).

Research on second language acquisition (SLA) focusses on the learners’ language behaviour and language knowledge and the development of the so-called interlanguage. Interlanguage refers to the emergent linguistic system that learners develop in acquiring the target language as manifested in non-native language production and perception. This study will investigate the identification of German vowels by adult non-native learners acquiring German as L2.

2 emphasis mine.
perception is not given – production can be native-like only by chance. Furthermore, these studies show language-specific perception patterns that constrain the development of mental representations for L2 sound categories. Therefore, the study of perception in L2 is a crucial issue for an understanding of difficulties in second language acquisition and the development of phonological categories in the target language.

Second language acquisition (SLA) researchers as well as language teachers agree that inter-lingual differences between L1 and L2 have a crucial influence on L2 acquisition and performance. More specifically, it is the learners’ perception of these inter-lingual differences and their implicit and explicit assumptions that have an influence on the emerging interlanguage system. Phonetic structures, which are phonologically distinctive in L2 but not in L1, are often not correctly identified, discriminated and categorized in L2 perception and therefore cannot be adequately acquired. Moreover, sub-phonemic differences (“fine phonetic details”) between L2 sounds and corresponding sounds in L1 may not be recognized sufficiently due to the listeners’ perception of L2 sounds as “similar” or even “equivalent” to L1 categories. Inadequate perception due to the influence of the learner’s L1 leads to “non-native” pronunciation of L2 sounds.

Experimental studies in SLA provide abundant evidence for the effects of influence from the learners’ native language on the perception of the target language. Structures of the learners’ native language are commonly assumed to be transferred into the target language. However, transfer of linguistic forms from L1 to L2 is not the only strategy of L2 learners to acquire the target language system. Rather, L2 learning does not only involve transfer but also implies a variety of other language-related cognitive processes. Processes of interaction between L1 and L2 such as comparisons of structures between or within language systems, discrimination and categorization, ratings of perceived differences and distances, judgements about similarity and typicality, strategies of preference or avoidance, reaction times, etc. are consciously or subconsciously applied. Cognitive processes involving interactions between the target language and other previously or subsequently acquired languages represented in the learners’ mind will be referred to here as cross-linguistic influence (following Odlin 1989, 2005; Jarvis & Pavlenko 2008; Jarvis 2012).

The acquisition of a second language’s phonological system involves the establishment of relations of functional contrast, similarities and differences between linguistic structures together with hypotheses on probability distributions and strategies of preference or avoidance for specific linguistic structures. In other words, it is not only transfer from L1 to L2 that shapes the emergent phonological system of a learner’s interlanguage. Rather, the specific
ways that L2 sound structures are perceived, produced and mentally represented are
determined by *cross-linguistic influence* of the the native language, the target language and
other languages represented in the learner’s mind.

Beside a number of empirical studies that describe the phenomenon of cross-linguistic
influence and language-specific perception of sounds in L2 acquisition, several theoretical
models and hypotheses have been proposed to describe constraints on L2 perception as
influenced by the L1 phonological system. A number of models of L2 speech perception and
acquisition have been proposed such as Kuhl’s Native Language Magnet Model (Kuhl 1995;
Kuhl & Iverson 1995), Flege’s Speech Learning Model (Flege 1995) or Best’s Perceptual
Assimilation Model (Best 1995; Best/Tyler 2007). These models posit cognitive processes
such as “perceptual assimilation”, “equivalence classification” or “category goodness” to
account for the influence of L1 on the learners’ success to perceive L2 sounds correctly and to
develop adequate mental representations for L2 categories. The primary aim of research
within these theoretical accounts is to predict the relative difficulty of non-native contrasts in
L2 perception, production and mental representation. To account for difficulties in L2
acquisition, SLA research largely focusses on contrastive analyses comparing L1 and L2
structures and on experimental testing. Difficulties are assumed to result from inter-lingual
differences and similarities between structures of L1 and L2.

“Similarity” is one of the central concepts in many studies on second language acquisition.
The assumption that similarity between sounds in L1 and L2 limits perceptual accuracy and
that perceptual accuracy limits production and mental representations of L2 sounds is a
common notion in models and theories on the acquisition of second language phonology. It is,
however, surprising that the operationalization of the construct “similarity” itself has, so far,
not received sufficient attention in second language acquisition research.

One of the central aims of this study is the operationalization of “similarity” as a central factor
in non-native vowel identification. A further aim is to demonstrate the interacting effects of
similarity and cross-linguistic influence in L2 vowel perception in an experimental cross-
language comparison.

The study shall provide a comprehensive approach to L2 perception by integrating
contributions from second language acquisition research, empirical studies in articulatory and
acoustic phonetics and theoretical concepts from cognitive psychology for a better
understanding of the diverse phonetic and cognitive aspects of similarity and its role in non-
native vowel perception.
Similarity between vowel categories will be discussed under two aspects: (1) in terms of an analysis of articulatory and acoustic characteristics of vowel signals (objectively measurable similarity) and (2) in terms of perceived similarity of vowel categories within the L2 system (subjective similarity as perceived by L2 learners).

In theoretical accounts, similarity commonly refers to inter-lingual relations between L1 and L2 structures, whereas intra-lingual relations of similarity between items within the L2 system are commonly disregarded. Both types of similarity relations may even hinder the development of adequate L2 categories. A central tenet of the study is that not only inter-lingual relations between L1 and L2 sounds, but also intra-lingual similarity relations of categories within the target language have a crucial role in the development of mental representations for L2 sound categories. Both, cross-linguistic influence in general and intra-lingual similarity relations established by the learners are considered to determine the learners’ success in developing adequate L2 sound categories.

The effects of cross-linguistic influence and intra-lingual similarity of categories within the target language will be exemplified by a specific sub-set of the phonological system – the vowel inventory. The aim of the experimental part is to investigate the perception of German vowel contrasts by L2 learners from diverse language backgrounds with smaller or larger vowel inventories. German has a comparatively rich and complex system of vowel contrasts that may cause considerable difficulties in L2 acquisition particularly for learners from native languages with a smaller, less complex vowel inventory. This study will show how the perceptual identification and categorization of German vowel sounds and the learners’ difficulties as well as their strategies of preference or avoidance in an experimental task are influenced not only by language-specific factors but also by learner-related and more universal aspects of human speech perception and cognition.

The experimental design of this study is largely motivated by the author’s experience in teaching German as a foreign language in groups with learners from diverse language backgrounds. For many German learners, problems in perception and categorization of German vowel phonemes do not only have an effect on “foreign accent” in L2 but appear also to cause severe problems in the acquisition of orthography, lexical items and morphological forms (cf. Kerschhofer-Puhalo 2010b, 2012, in press a).

The major purpose of an empirical investigation of German vowel perception by L2 learners from diverse language backgrounds is to describe possible language-specific and/or universal patterns of difficulties, category confusion and systematic perceptual vowel substitutions. Integrating theoretical approaches and empirical data on L2 German vowel perception, the
study’s results will contribute not only to phonological and typological theory, but will also serve pedagogical purposes, by providing controlled empirical evidence for difficulties and perceptual confusion of German vowel categories which were observed among L2 learners from ten different languages. The ten languages under investigation are Albanian, Arabic, English, Farsi, Hungarian, Mandarin, Polish, Romanian, SerBoCroatian, and Turkish. The language choice was motivated by statistics on the most common native languages of students in the Austrian educational system.

In the world’s languages, substantial variation in number and quality of vowel contrasts across phonological systems is observed. This variation concerns not only the number and type of phonemic contrasts but also sub-phonemic phonetic variation along articulatory and acoustic parameters, i.e. phonetic details in the realization of a given vowel category. While phonetic variation is considered to vary continuously along specific articulatory or acoustic parameters, vowel perception is commonly regarded as categorical. However, categorical perception is language-specific. In other words, no linear relationships between gradual variation along phonetic parameters and categorical perception can be assumed. Rather, category boundaries vary language-specifically and language users from diverse language backgrounds exploit different phonetic parameters to differing extent according to the structure of their native language vowel system.

Even though typological studies and cross-linguistic comparisons reveal enormous variation in number and types of vowel contrasts, system constellations and phonetic parameters for phonemic contrasts, there are some distributional patterns that are particularly common in the vowel systems of the world’s languages. Common patterns in vowel inventories and the frequent occurrence of specific vowel qualities, e.g. a preference for /i/, /u/ and /a/ in the languages of the world, have been argued to be “universal” and motivated by human speech capacity in general and by characteristics of the human vocal tract and the peripheral auditory system in particularly. Sounds that are “easier” in articulation and perception are expected to occur “universally” more frequently and are also referred to as less “marked” than more complex, more marked structures that universally occur less frequently.

A large number of studies from diverse theoretical backgrounds have argued that phonetically grounded universal preferences and markedness conditions determine the distributional patterns of vowel systems in the languages of the world as well as the organization of individual vowel systems. However, a question of intense scientific debate is whether these universal forces are merely phonetic or cognitive in nature.
Universal preferences and markedness constraints have also been an issue in second language acquisition research. Studies in SLA show that structures and developmental sequencies in learners’ interlanguages largely correspond to patterns observed in natural language systems. Universal factors resulting from major characteristics of human speech capacity are assumed to determine vowel inventories in natural languages as well as L2 learners’ difficulties and their strategies in L2 language acquisition. These universal forces may even “overrule” language-specific characteristics of the learners’ L1 explaining the occurrence of common patterns of difficulties and preferences in interlanguages independently of the learners’ native language. More specifically, less difficulties with universally more common “unmarked” sound structures are observed in interlanguages with L2 learners from diverse language backgrounds.

Asking for the phonetic and/or cognitive bases of these universal preferences and constraints in language systems and interlanguages, however, also addresses the issue of the relation between phonetic form and phonological function. For native but particularly for non-native perception, it is important to emphasize that no linear relation can be assumed between articulatory constellations and the resulting acoustic characteristics of the speech signal on the one side and the listeners’ perception of this signal on the other side. Rather, the matching of acoustic signal (form) and phonemic category (function) must be considered to vary according to the listeners’ native language and his/her linguistic knowledge and experience in the target language.

A fundamental differentiation in the present study refers to the human articulatory and acoustic vowel space as distinct from the language-specific perceptual vowel space. The perceptual vowel space refers to the cognitive organization of a particular vowel system and the listeners’ selective attention to specific phonetic parameters. The perceptual vowel space in a language user’s mind may be compared to a language-specifically tuned cognitive map. The current study will present a method to visualize L2 learners’ cognitive maps for the L2 vowel system by the statistical procedure of Multidimensional Scaling (MDS) based on category confusion data from an identification task.

The cognitive vowel map, i.e. the psychological structure of a vowel system, may vary according to the listeners’ native language, their awareness of particular phonemic contrasts in the language under consideration and their perceptual sensitivity and selective attention to specific phonetic details in the signal. In the course of the L2 acquisition process, the cognitive map of the L2 vowel system may be reorganized by increased awareness of particular phonemic contrasts and phonetic
characteristics that the learner has not been aware of before. The mental representation of the L2 vowel system may also be further refined by increased perceptual sensitivity and perceptual re-allocation to specific phonetic details that the listener has previously not been aware of. It is expected here that the listener’s knowledge and experience will not only determine the extent to which L2 vowel sounds are identified correctly, but also influences his/her strategies in cases where correct identification seems at risk.

In the experimental part of this study, a category identification task is used to reveal L2 listeners’ difficulties in identifying German vowel categories correctly. Wrong identifications are considered to reflect the learners’ difficulties in differentiating specific vowel contrasts. The results are subject to a quantitative as well as a qualitative analysis, revealing difficulties in correct identification, category confusion and perceptual substitutions, and the learners’ tendencies to prefer or neglect specific response options.

The purpose of the empirical investigation is to exemplify the interaction of language-specific and universal factors based on empirical evidence for difficulties that L2 learners of German may encounter upon perceiving phonemes of a phonological system, which is more complex than their native phonemic system. The data analysis provides a language-specific description for each of the L1 sub-samples and a cross-language comparison of patterns of perceptual confusion and perceived similarity between L2 categories.

This kind of large-scaled overview and cross-language comparison of German vowel perception by learners from diverse language systems may reveal the influence that universal phonetic and cognitive factors may have in second language vowel perception better than studies focussing only on one single language. The data analysis will not only provide evidence for phonological or typological theory but will also serve pedagogical purposes.

Unlike many other studies, which investigate only a subset of L2 phonemes, the full repertoire of German vowel phonemes is investigated in the present study. The decision to include the whole vowel inventory in the study is motivated by three arguments: (1) the dynamic relationships between all members of the target system have to be considered in order to understand the process of system organization and category formation of new or similar L2 sounds, (2) in a cross-language comparison of vowel perception the possible candidates for perceptual substitutions may vary language-specifically, e.g. for front rounded vowels both front unrounded or back rounded vowels are possible substitutes, (3) for pedagogical purposes, an empirical investigation of the complete vowel inventory is more relevant and useful than studies of single vowel qualities or a sub-set (e.g. only front vowels) of vowels.
The current study will ask for the phonetic and cognitive factors that determine (1) the listeners’ difficulties in identifying German vowels correctly, (2) patterns of perceptual confusion between L2 categories, and (3) the listeners’ preferences for specific categories as response options.

Referring to the notions of similarity and cross-linguistic influence, the study will ask for those factors that influence perceived similarity of vowel categories between and within language systems and for the impact of cross-linguistic influence interacting with universal preferences and constraints that determine the listeners’ performance in an identification task in L2. The theoretical concepts of markedness and universals will be applied here to extend the scope and descriptive power of traditional contrastive analysis of the systems of L1, L2 and IL.

To conclude, the central tenet of this dissertation is that cross-language speech perception is conditioned by three major factors:

1. cross-linguistic influence between the learners’ first language L1 and the target language L2 (and other languages acquired),

2. relationships of intra-lingual perceived similarity between vowel categories of L1 and L2 and between categories within L2 as established by the learner at a given stage of L2 acquisition, and

3. cross-linguistically, by the influence of universal phonetic and phonological preferences and markedness conditions that determine or constrain the acquisition process and the listeners’ difficulties and choices of specific response categories in an identification task.

An integrated view of these three major factors shaping interlanguage phonology enables a comprehensive account of perceptual learning in second language acquisition.

**Organization of the dissertation**

Chapter 1 will resume basic theoretical notions and concepts of SLA research that have been claimed to play a role in the acquisition of phonetic and phonological patterns in L2 acquisition. Moreover, the chapter will review concepts of markedness and universals and their status within second language acquisition theory.

Chapter 2 discusses fundamental aspects of human speech perception and language processing and the development of speech perception in L1 and L2, i.e. the mechanisms by which sounds are processed, acquired, internalized, and used in L1 or L2. Moreover,
experimental methods in L2 perception are reviewed. The last section of chapter 2 discusses current theories of L2 perception.

Chapter 3 discusses different aspects of “similarity” in phonetics and SLA research. The chapter reviews aspects of phonetic similarity in articulatory, acoustic and perceptual terms and relates the diverse notions of similarity with the learners’ ease or success in identifying L2 sound patterns correctly. The impact of acoustic-phonetic structures on the language-specific perception and mental representation of L2 sounds is discussed in the last section of this chapter.

In chapter 4, phonetic and phonological definitions of vowels are reviewed. The discussion will focus on aspects of system size and contrast types and on the phonetic correlates of phonemic oppositions. The chapter discusses phonetic, phonological and typological aspects of vowel inventories and presents evidence for specific patterns that cross-linguistically seem to be preferred in the vowel inventories of the world’s languages. Theories on vowel inventory typology that have been proposed to account for these universal patterns and preferences such as Markedness Theory, Natural Phonology, Quantal Theory and articulatory-oriented approaches are discussed in the last section.

Chapter 5 presents a phonetic and phonological description of the German vowel system. German vowel categories will be classified in terms of articulatory regions of the vocal tract and will be described in terms of articulatory and acoustic properties. The acoustic-phonetic data presented here is based on a detailed analysis of the input stimuli from the experimental part of this study. A description of the German vowel system that is based on articulatory and acoustic characteristics offers insights into phonetic similarities between German vowel categories. The last section of this chapter presents an analysis of phonetic similarity of German vowels in terms of acoustic-phonetic properties and deduces predictions for difficulty and category confusion between German vowels by means of Hierarchical Clustering.

The experimental design, the input material and the test procedure of the current study are presented in chapter 6.

Chapter 7 provides a detailed discussion of procedures of data analysis and crucial aspects of data interpretation. The goals, scope and limitations of data analysis and data interpretation are described for each of the type of quantitative or qualitative analysis procedure (for an overview of all types of analyses performed in this study, see Table 7.8).

A detailed discussion of the study’s experimental results focussing on language-specific, learner-related and category-specific aspects is presented in chapter 8, 9, 10 and 11.
Chapter 8 describes individual factors and their influence on the L2 learners’ differential success in the perception experiment.

Chapter 9 provides a first overview of the major results for the full sample of 173 non-native listeners and presents a cross-language comparison on language-specific differences and commonalities in difficulties, perceptual substitution processes and category preferences. A general analysis of results for the full L2 sample will include the following aspects: (1) a quantitative analysis of (a) L2 listeners’ difficulties, i.e. the ratio of wrong and correct identifications, and (b) the listeners’ preferences for specific response categories in a cross-language comparison and a vowel-specific comparison, followed by (2) a qualitative analysis of (a) confusion patterns and perceptual substitution processes, (b) similarity scores for the full L2-sample, and (c) cognitive maps of the perceptual vowel space for each of the ten subsamples of L2 listeners derived from a Multidimensional Scaling Analysis (MDS).

Chapter 10 discusses the results for each of the language sub-samples separately. For each of the participants’ native languages, the analysis will offer (1) a description of general characteristics of the language under discussion, (2) a phonological and phonetic description of the vowel system, (3) a brief contrastive outline describing previous research and possible areas of difficulty with L2 German vowel perception, and (4) a detailed analysis of the quantitative and qualitative results of the perception experiment (as outlined above).

Chapter 11 provides a cross-language comparison of vowel-specific difficulties, preferences and directions of perceptual substitution patterns for each of the German vowel categories. The vowel-related focus of this chapter allows for a cross-language comparison for German vowel classes and single categories and reveals common patterns observed in several language sub-samples. Moreover, it provides insights into category-specific patterns within a given vowel class. These common patterns within a given vowel class refer not only to comparisons of error rates (difficulties) but also to the occurrence of perceptual substitutions (confusion patterns) and the listeners’ bias to select specific response patterns (preferences and asymmetries).

Chapter 12 will take up the diverse strings of argumentation and resume the experimental results focussing on the issues of “similarity” and “bias” to account for the differential results in terms of error rate (difficulties), category confusion due to similarity, and category preferences (biases) and asymmetries in perceptual substitutions. The major aim of this last chapter is to relate the phonetic facts and empirical results with theoretical contributions from research in cognitive psychology and findings on speech perception and language learning to
identify those elements that are essential to a model of *intra-lingual similarity* of L2 categories and *perceptual bias* in second language acquisition. General conclusions, pedagogical implications and an outlook for further research are given in the final section of this study.