Negative correlation between rs-FC of the frontal pole and risk-seeking behavior in young males

Yacila I. Deza Araujoa, Lydia Hellrunga, Nils B. Kroemerab,c, Stephan Nebea, Michael N. Smolkaa.

aDepartment of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany; bPsychiatry Department, Yale University, New Haven, CT, USA; cJohn B. Pierce Laboratory, New Haven, CT, USA

Background

The late protracted pruning of the PFC and the stronger activation of maturing reward circuits might encourage impulsivity and risk-seeking behaviors and lead to poor decision-making during adolescence and young adulthood123. Here, we explored the relationship between value-based decision-making (VBDM) and resting-state functional connectivity (RSFC) in a big sample of young males.

Methods

RS data from 178, 18 y.o, healthy men were analyzed with the FSL Library. MELODIC was used to identify 12 networks. Dual regression was carried out in order to produce subject-specific maps and time courses of every network. FSLNets v0.6. was used for modelling the networks’ time series. Six RSNs were selected for single-network analysis because of their involvement in decision-making and related processes45 (2 DMNs, 2 fronto-parietal, cognitive control, basal ganglia). Finally, FSL-randomise, with 10 000 permutations was used to test voxel-wise the relationship between each network and the VBDM scores on a group level.

Results

The hierarchical clustering showed the association between networks on a group level. Single-network results were identified using TFCE, (Bonferroni corrected for multiple comparisons). A cluster located on the rostrolateral PFC (x=-28, y = 60, z = 12; \(p_{\text{FWE}} < 0.006 \) Bonferroni corrected for multiple comparisons) exhibited a negative correlation with increasing risk-seeking scores.

Conclusions

The hierarchical clustering analysis endorsed our network selection and showed a consistent association of networks with similar functions. The single-network analysis highlighted the role of the rostrolateral PFC in higher-order cognitive functions and processing of internal states6. Additionally, the activation of this structure under resting conditions may be similar to its activation with a low-demand cognitive task. Our results suggest that less engagement of this structure may underlie risk-seeking behavior in young subjects.
